
Beastie Meets Raccoon: MINIX 3 as a BSD

[Extended Abstract]

Ben Gras
Dept. of Computer Science,
VU University Amsterdam,

The Netherlands
ben@minix3.org

Gianluca Guida
Dept. of Computer Science,
VU University Amsterdam,

The Netherlands
gianluca@minix3.org

Arun Thomas
Dept. of Computer Science,
VU University Amsterdam,

The Netherlands
arun@minix3.org

Thomas Veerman
Dept. of Computer Science,
VU University Amsterdam,

The Netherlands
thomas@minix3.org

ABSTRACT
MINIX 3 has imported a significant amount of userland BSD code.
The trend began several years ago, but the pace has quickened
markedly. We have already imported NetBSD’s buildsystem, NetBSD’s
C library, the pkgsrc package management infrastructure, and vari-
ous userland utilities from NetBSD and FreeBSD. We are currently
in the process of porting a full NetBSD userland as well as puffs for
increased filesystem support. Though not technically BSD code,
we have adopted clang/LLVM as our default toolchain, and we are
working to adopt elftoolchain as a binutils replacement.

When MINIX 3 was originally conceived, the goal was to create a
robust multiserver operating system that maintains POSIX compat-
ibility. We leveraged our multiserver architecture in which most OS
code runs in separate usermode processes to provide new function-
ality, such as driver isolation and restartability. Now, we would like
to push farther than just POSIX compatibility and provide a system
that looks much like a BSD from a user’s perspective. This paper
serves as a progress report on our ongoing work turning MINIX 3
into a BSD. We have a long way to go before MINIX implements
all BSD functionality, but we have a good start. We will continue
to pull in BSD code, and we have identified future opportunities to
pull in driver code and kernel components from BSD.

This will serve to enable our vision of the best of both worlds:
isolation and restartability features unique to Minix combined with
the well-maintained, real-world-hardened system code for drivers,
filesystems, userland, and other OS code, of a modern BSD OS.

1. INTRODUCTION
MINIX 3 is not a BSD officially, but it is starting to look a bit
like one. MINIX has been steadily importing userland code from
NetBSD. The ultimate goal is to make MINIX as BSD-like as pos-

DRAFT: as of May 30, 2011

sible from the user’s perspective, while maintaining our multiserver
architecture and our unique fault tolerance features. To this end,
we have adopted the pkgsrc package management infrastructure as
well as the NetBSD C library and userland. We are also work-
ing on importing the puffs userspace filesystem infrastructure from
NetBSD.

This paper will describe the design tradeoffs and implementation
issues we encountered while incorporating these BSD components
into our system. We hope our experiences will be useful to other
OS projects who are incorporating BSD code. We also hope the
BSD community will find it interesting to hear how their code is
being used and adapted.

2. BACKGROUND
2.1 A Brief Introduction to MINIX 3
This section provides a brief introduction to MINIX 3 and its mul-
tiserver architecture, in which most OS code runs in separate user-
mode processes. We will describe past work in the area of driver
isolation fault and driver restartability [4, 3, 10, 5, 6]. We will talk
about the design choice to maintain POSIX compatibility. We will
provide enough background so the reader can follow the rest of the
paper.

2.2 MINIX 3’s March Toward BSD
This section will provide a brief history of how BSD code made
its way into MINIX 3. The process started with the occasional
userland utility, library functions, and header file being imported
into MINIX. Then, when MINIX grew to need a more advanced
buildsystem, we adopted the NetBSD buildsystem. This made it
even easier to import more userland utilities. We then adopted
pkgsrc. In order to support pkgsrc, we imported yet more BSD
userland code and library functionality. Then, we worked to import
the NetBSD C library. About the same time, we worked to migrate
to the clang/LLVM toolchain. Currently, we are importing puffs
and the entire NetBSD userland.

This section will also briefly discuss some of the philosophical sim-
ilarities between MINIX 3 and BSD. MINIX 3 is licensed under the
BSD license. Like the BSDs MINIX 3 ships a full OS distribution,
not just a kernel. Several MINIX 3 developers are longtime BSD
people.



3. PKGSRC
Minix has successfully adopted pkgsrc as the primary package man-
agement system. Most of the work for this was performed by Gau-
tam Tirumala (mentored by Arun Thomas and Ben Gras) during his
GSOC 2010 tenure and integrated immediately.

We only build a small fraction of the packages in pkgsrc currently,
but find insofar as there are no fundamental features missing from
the OS, we can build with minimal changes. The two major missing
features blocking many packages are missing pthreads and shared
library support.

Minix provides a pre-bootstrapped pkgsrc environment similar to
what NetBSD does. Packages fundamental to pkgsrc (i.e. pkg_install)
come pre-installed with Minix installations, and people can install
pre-built binary packages out of the box with pkgin. They can eas-
ily get the pkgsrc source hierarchy using git (we use DragonFly’s
git mirror of the pkgsrc cvs tree) if they wish.

This year’s GSOC, performed by Thomas Cort and mentored by
Gautam and Ben, will be another big step for pkgsrc on Minix,
most significantly bulk building and upstreaming Minix support,
hopefully leading to official Minix support in pkgsrc.

4. NETBSD C LIBRARY AND USERLAND
The Minix project is in the process of adopting the NetBSD libc,
entirely replacing its own libc, as part of the strategy of modern-
izing Minix system software that is not Minix-specific. Implicitly
this means: also adopting the NetBSD C headers hierarchy, and
replacing the one Minix has. The goal is to have a modern, well-
maintained libc plus C headers set, to lower the barrier to running
modern application programs.

A significant secondary benefit to this work is that we have a suc-
cinct overview of shortcomings of the Minix system call API - i.e.
missing features and system calls that are required to support a
modern libc. This is due to the fact that we decided to maintain
a separate in-source-tree ’patch’ file, spelling out the differences
between the original NetBSD code and its port to Minix. It has be-
come an ongoing goal of the Minix project to reduce this patch file,
and other similar patch files, and so reduce the maintenance burden
of our libc.

There were some hurdles in porting the NetBSD libc. One surpris-
ing finding was that support for the case of ‘aout and non-reentrant’
had deteriorated to a degree, causing compile problems. Another
is the fact that the kernel part of the NetBSD C headers are from a
different hierarchy than the standard includes, an organisation sig-
nificantly different from the Minix headers. Furthermore, there is
quite some minix-specific code that had to be kept, both in libc and
headers code. Also the Minix networking API is sufficiently differ-
ent from the standard BSD sockets interface that much of that code
had to be different.

Currently we are migrating the base system and pkgsrc packages
from the Minix libc/headers system to the NetBSD one. Much base
system code contains cases for both to smooth the migration path.

The end result of the netbsd libc project is that a relatively clean
port was done, with which we can compile many BSD userland
utilities unmodified.

5. PUFFS

The goal of porting puffs [7] is to ultimately be able to port li-
brefuse [1] and be able to run Fuse file systems. In MINIX 3, the
entire file system already runs in user space, which should make
the process easier.

We have a Virtual File System (VFS) running on top of several File
Servers (FS). By default MINIX 3 is installed using three sub parti-
tions with the MINIX 3 file system; each (sub) partition is handled
by an FS instance. VFS communicates with these FSes by send-
ing messages using the VFS-FS protocol, which is essentially a set
of Posix-like calls (e.g., mknod, chown, link, unlink, etc). One of
the challenges will be to translate this mechanism to the PUFFS
equivalent.

For example, puffs operations work on file paths, where VFS-FS
requests work on inodes. Also, file systems implemented using
PUFFS receive mount parameters through argv[], but in MINIX 3
there is a separate VFS-FS request that provides this information.
Moreover, in MINIX 3 every driver and system server has to deal
with the System Event Framework (SEF) which handles live up-
dates and failure recovery. In particular, during the start of a driver
some SEF parameters have to be set before it starts its main loop.

While work is underway to "decouple" VFS from FS instances by
making communication asynchronous, there is currently no support
for subsequent requests to the file system by a puffs instance. For
example, at the moment it is impossible to port sshfs to MINIX
3, as talking to an sshfs instance will ultimately result in having
to talk to INET to get access to the network. This communication
has to pass through VFS which will result in a deadlock, because
VFS is still stuck talking to the sshfs instance. We do have some
support for callbacks to VFS, but that is too limited to handle this
problem. However, it will be solved with the introduction of the
asynchronous VFS, which only has to prevent PUFFS instances (or
FSes, for that matter) from talking to itself.

6. TOOLCHAIN WORK
Since its first release, MINIX has used the venerable Amsterdam
Compiler Kit (ACK) [11] as its toolchain. ACK provides a C com-
piler, assembler, linker, archiver, and other binary utilities. It is
roughly equivalent in functionality to the combination of GCC [12]
and binutils [13]. Since ACK does not support long long and other
C99 functionality, we have decided to adopt Clang/LLVM [9] as
our base system compiler. In the past, we would apply ACK-
specific workarounds when importing BSD code. This is not the
best solution. Now that we have a more modern toolchain, we no
longer have to apply these workarounds.

While we have support for compiling our base system with GCC,
we prefer BSD-licensed components so we would rather use Clang/L-
LVM as our default compiler. We are also interested in Clang/L-
LVM because of its fast compile times. Additionally, we are in-
terested in adopting KLEE [2], a symbolic execution tool built on
LLVM, to help us verify our software. We will continue to use
GCC to build our pkgsrc packages for the time being, though we
are keenly following the progress of Clang/LLVM pkgsrc work.

We are currently using clang/LLVM r125950 from pkgsrc. We have
decided not to import clang/LLVM into src, since it would greatly
increase the size of our src repository, and we find it simpler to use
pkgsrc to manage the toolchain.

In this section, we will discuss some of the problems we encoun-



tered when importing clang/LLVM. Many problems we encoun-
tered initially were related to issues with clang’s aout support. When
clang was originally imported, MINIX did not support the ELF ex-
ecutable format. Now that MINIX supports ELF, many of our aout-
specific patches are no longer necessary. There was also a problem
we encountered with the clang package requiring libgcc; we re-
solved this by using compiler-rt from the LLVM project. We have
also found that clang is slower than gcc on MINIX; this appears to
be a MINIX-specific problem, and we are working to address this.

Our Clang/LLVM port currently requires binutils to work. We have
imported libelf from elftoolchain, and we plan to import more of
the elftoolchain equivalents for GNU binutils. We, like FreeBSD,
are still in need of a BSD-licensed linker. Once we have that, we
will have a fully BSD-licensed toolchain.

7. RELATED WORK
This section will provide a brief overview of related work. Ap-
ple’s Darwin/XNU combines the Mach microkernel with BSD ker-
nel components. We plan on doing something a bit different. We
will continue to use our multiserver architecture in which OS com-
ponents run in separate usermode processes, but we want to incor-
porate a full BSD userland (C library, utilities, etc). Eventually, we
would also like to incorporate more kernel code from the BSDs, but
we would like to run these components in usermode via Rump [8].

The Mach microkernel ran BSD 4.3 as its POE server.

LynxOS provides full ABI compatibility with Linux. We are more
interested in API compatibility with BSD. We ultimately would like
to be able to compile and run all application programs that are sup-
ported by NetBSD.

L4/Linux can boot Linux. MINIX 3 is not operating as a hypervi-
sor.

Rump [8] allows you to run BSD kernel code on other operating
systems. We would like to leverage it run BSD kernel code, specif-
ically the BSD TCP/IP and driver code, on MINIX 3 in the future.

FreeBSD has Linux emulation support.

8. CONCLUSION AND FUTURE WORK
MINIX 3 is becoming more BSD-like as it imports more code from
BSD. We ultimately would like MINIX 3 to look like a BSD from
the user’s perspective while we continue to do research into the OS
core. There is much work to be done before MINIX 3 can reach that
state, but this paper describes the work done so far. With the new
Libc and userland utilities, this process will become much easier.

We will need to continue to implement missing functionality from
MINIX, including missing system calls, shared library support, pthread
support. The NetBSD scheduler activations / lightweight process
system underpinning its pthreads implementation is being re-implemented
for Minix right now, which we expect will enable many missing ap-
plications for Minix.

In the future, we are also interested in running NetBSD kernel com-
ponents on MINIX via Rump [8]. We are especially interested in
the BSD TCP/IP stack and driver code. We would also like to con-
tribute more to the upstream BSD community. We have submitted
a few patches upstream, but we would like to do much more.

9. ACKNOWLEDGEMENTS
This work has been funded by the European Research Council and
the Google Summer of Code Program. We would like to thank
our Google Summer of Code students: Gautam Tirumala, Thomas
Cort, Evgeniy Ivanov, and Vivek Prakash. We would like to thank
the larger MINIX community for their contributions. Finally, we
would like to express our utmost gratitude to the BSD community
for releasing their well-crafted codebase code under an open-source
license, so that we could build on your work.

10. AVAILABILITY
MINIX 3 is available under the BSD license. It can be downloaded
from http://www.minix3.org. Much of the work described
in this paper will be released as MINIX 3.2.0. Progress can be
followed in our git tree: git://git.minix3.org/minix.
git.

11. REFERENCES
[1] A. K. and. ReFUSE: Userspace FUSE Reimplementation

Using puffs. In Proceedings of EuroBSDCon 2007, pages
29–42, September 2007.

[2] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted and
automatic generation of high-coverage tests for complex
systems programs. In Proceedings of the 8th USENIX
conference on Operating systems design and
implementation, OSDI’08, pages 209–224, Berkeley, CA,
USA, 2008. USENIX Association.

[3] J. Herder, H. Bos, B. Gras, P. Homburg, and A. Tanenbaum.
Reorganizing unix for reliability. In Proceedings of
Asia-Pacific Computer Systems Architecture Conference,
pages 81–94, 2006.

[4] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Minix 3: a highly reliable, self-repairing
operating system. SIGOPS Oper. Syst. Rev., 40:80–89, July
2006.

[5] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Failure resilience for device drivers. In
Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’07,
pages 41–50, Washington, DC, USA, 2007. IEEE Computer
Society.

[6] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Fault isolation for device drivers. In
Proceedings of the 39th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’09,
pages 33–42, Washington, DC, USA, 2009. IEEE Computer
Society.

[7] A. Kantee. puffs - Pass-to-Userspace Framework File
System. In Proceedings of AsiaBSDCon 2007, pages 29–42,
March 2007.

[8] A. Kantee. Rump file systems: kernel code reborn. In
Proceedings of the 2009 conference on USENIX Annual
technical conference, USENIX’09, pages 15–15, Berkeley,
CA, USA, 2009. USENIX Association.

[9] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In
Proceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO’04), Palo Alto,
California, Mar 2004.

[10] A. Tanenbaum, J. Herder, and H. Bos. Can we make
operating systems reliable and secure? Computer, 39(5):44 –
51, may 2006.



[11] A. S. Tanenbaum, H. van Staveren, E. G. Keizer, and J. W.
Stevenson. A practical tool kit for making portable
compilers. Communications of the ACM, 26:654–660,
September 1983.

[12] The GNU Project. GCC, the GNU Compiler Collection,
version 4.4.3. http://www.gnu.org/software/gcc.

[13] The GNU Project. GNU binutils, version 2.17.
http://www.gnu.org/software/binutils.


