
Fossilizing NetBSD: The road to modern version

control

Jörg Sonnenberger <joerg@NetBSD.org>

October 3, 2011

Abstract

This paper discusses cvs2fossil, a new repository conversion tool for
CVS. It gives an overview of how different CVS features are handled and
discusses some issues found in real world repositories. The second part
analyses the performance of Fossil and compares it to other VCSs.

1 Introduction

The NetBSD project has successfully deployed CVS for over one and a half
decades. The main modules, pkgsrc and src, provide a huge challenge for any
replacement. The pkgsrc module challenges scalability by having over 60,000
files per working copy and a total of over 100,000 files in the repository. The
src module challenges scalability both in terms of raw size (4.3GB of RCS files)
and the large history of 240,000 change sets.

Over the last three years a number of attempts to provide conversions to
modern version control systems (VCS) have been made. The different VCS
and the associated conversion tools all have different shortcomings and no clean
consensus could be reached to move into one direction or another.

One important tool is Simon Schubert’s fromcvs. 1 It was the only option for
continously replicating the CVS changes into Git without breaking the normal
updating process of the target VCS. This raised the question of how much work
a RCS/CVS conversion tool would be that fits the requirements of NetBSD:

• Be faithful: honour RCS keywords.

• Be smart: properly deal with vendor branches and magic CVS revisions.

• Be fast: finish in much less than a day on reasonable modern hardware.

• Be helpful: provide support for cleaning up the mess that a large scale
repository ends up being.

At the time concrete plans started to form, Richard Hipp had started making
Fossil VCS project 2 more visible and managed to cut the legalese associated
with the source code by moving to a BSD-like license. The result is attractive–a
compact binary under a liberal license with few external dependencies and a

1http://ww2.fs.ei.tum.de/~corecode/hg/fromcvs
2http://www.fossil-scm.org

fitting name. A project was born: converting the NetBSD repository to Fossil
and evaluating the scalability.

The first part of this paper discusses the resulting conversion tool cvs2fossil.
This includes an overview of how different CVS features work and issues that
have been found in the NetBSD repository.

The second part of the paper analyses the current performance of Fossil for
various important operations and changes made in Fossil to deal with scalability
limits. This includes a limited comparison to other VCSs.

2 Anatomy of a CVS repository

2.1 Overview

A CVS repository is a loose collection of RCS files. All files are independent of
each other. Inside a RCS file, the commits form a directed acyclic graph. Each
commit has a revision number (unique per file), a time stamp, the author, state
and commit message associated. The state is either “Exp” or “dead”.

Revision numbers normally increase by one between revisions on the same
branch. Exceptions are the result of manual interference, e.g. using “cvs admin
-o”. Revision numbers consist of an odd number of small integers and each
branch adds another two components. The first revision of a file is 1.1.

The content of the head revision is stored as full text. Revisions on the
head branch are stored as backwards delta from the newer revision to the older
revision. Branch revisions on the other hand are stored as forward delta from
the older revision to the newer revision. This makes checking out the head very
fast but obtaining revisions of an old branch relatively slow.

2.2 Tags and branches

CVS allows to associate symbol versions to individual revisions and whole
branches. All symbols have an odd number of components with one excep-
tion. Vendor branch tags are special and will be discussed in detail in the next
section.

Whether a symbol specifies a tag or a branch can be verified by looking at
the second right-most component of the revision number. For branches this
component is 0. The prefix of branch revisions is obtained by removing this
component, e.g. the symbolic version “1.2.0.2” specifies the branch with the
prefix “1.2.2”. A tag on that branch would be “1.2.2.1”, the first revision of it.

2.3 Vendor branches

Vendor branches are a special feature of CVS and are created as result of the
“cvs import” command. They use the special “1.1.1” branch and a so-called
default branches. A default branch instructs cvs to use the revisions on the
specified branch instead of checking out the revision named as head. The first
regular commit removes the default branch marker and uses the “1.2” revision
number as head.

Vendor branches create two interesting problems. First, they are the only
important case where multiple branch tags can share the same revision and
there is no way to distinguish between them. This means that one revision on

the “1.1.1” branch can be part of the multiple logical branches. Second, they
make processing the head branch more complicated as the temporal order goes
from “1.1” to “1.1.1.1”, follows the vendor branch until the last revision that is
older than “1.2” and switches to “1.2” to follow the default branch.

“1.1” and “1.1.1.1” share the same time for vendor branches. This is not
true if a file has been added via “cvs add” first and a “cvs import” has been
done later.

The use of “cvs import -n” is strongly discouraged and can result in time
inversions in the repository even without manual patching. That means that a
revision has a date newer than a descendant revision.

2.4 Keywords

CVS supports keyword expansion for files stored in the repository. This is
enabled by default, but can be suppressed on a per file basis, e.g. to allow
storing binary files, or for specific operations. The list of keywords supported by
CVS includes Id, $Date$, Log. Most of the BSDs use a local modification
to get a custom keyword. NetBSD is using $NetBSD$, which expands to the
same text as Id. FreeBSD historically used a custom tag that included the
full module path. OpenBSD has a custom tag for manual pages.

Some tools dealing with CVS repositories don’t handle keyword expansion
and use the literal value stored in the repository. This is normally seen as off-by-
one error, e.g. the keyword contains the data from the last revision. The content
of the unexpanded version can be arbitrary; CVS checks the literal content of
the file in.

3 Anatomy of a Fossil repository

A Fossil repository is a SQLite database having both permanent and ephemeral
tables. The ephemeral tables are derived meta data used to efficiently find and
access the permanent data. From the permanent tables, only the “blob” and
“delta” tables are relevant for the conversion process. The “blob” table contains
all artifacts. The artifact is the fundamental storage unit in Fossil. It can either
represent a specific version of a file, a commit or other objects for the wiki or
ticket system. Artifacts are stored either as zlib compressed objects or as delta
relative to another artifact. The “delta” table connects artifacts stored as delta
with the corresponding reference. Artifacts are identified by their SHA1 hash.

Artifacts representing commits are called manifests. Manifests are simple
text files and include all data to describe a commit like author, commit date,
a list of files and SHA1 hash of the content of each file. Originally manifests
always included a full list of all files. This works well for small to medium sized
trees. It does result in very large manifests for trees the size of NetBSD src
though. During the “rebuild” phase where the ephemeral tables are populated,
all manifests have to be parsed. This has been addressed by introducing baseline
manifests. If a manifest references a baseline manifest, it inherits the full file
list of that baseline. The baseline manifest itself must not use this feature itself.

4 Conversion from CVS to Fossil

4.1 Overview

The conversion process has to manage a lot of data. For the NetBSD src tree,
190,000 files with over 1 million revisions have to be aggregated to 240,000
change sets. The total size of all uncompressed revisions is 24GB. Using a SQL
engine to access this simplifies the code by doing the heavy lifting and indexing
in a higher level language.

The conversion is split into consecutive phases:

1. Import from CVS into a SQLite database; compute branch points and the
mapping between revisions and branches.

2. Handle vendor branches and check consistency of branch points.

3. Computation of branch creation times.

4. Compute manifests and copy referenced blobs into target repository.

The phases are decoupled to allow manual changes for sanitation. This can be
used to adjust branch points or remove undesirable branches completely.

4.2 Import phase

This phase deals with parsing the RCS files and expanding all revisions. Key-
words are handled as if “cvs update” was used to fetch each revision explicitly.
The content of all revisions is compressed to save space and deltas for adjacent
revisions are computed in the background.

The content and the meta data of all revisions is not the only information
computed and stored in this phase. The relationship between revisions (ancestor
and descendent) is saved as well as all tags. The first pass for assigning revisions
to branches is done. Branch points are derived and revisions to skip memorised.

A branch point is the revision a branch is attached to. It can be obtained by
stripping the last component of the branch revision prefix. If the first revision of
a branch is in state “dead” and has the same commit time as the branch point,
it means that the file was not initially part of the branch, but added later via
“cvs add”. To handle this, the branch point is explicitly removed in this case
and the “dead” revision added to the list of skipped revisions.

Old repositories tend to accumulate cases where this rule has been violated.
Since branches and date based checkouts are already problematic in CVS, this
is often not visible. It does create problems for the third phase, the branch
creation time though.

One issue that is relevant for this phase is that “cvs commit” sometimes
duplicates the revision, e.g. two consecutive revisions have exactly the same
meta data and the content only differs in the keyword expansion. This can be
detected by checking the strict monotony of commits.

4.3 Vendor branches

The vendor branch processing deals with a number of separate but related issues:

1. If there is more than one vendor branch on a file, one of them has a branch
point. Duplicate this branch point for the other vendor branches on the
file. This deals with two “cvs import” calls for different vendor branch
names.

2. Warn if one branch is spawned from two different parent branches.

3. Weave the vendor branch revisions into the chronological order of the
default branch as needed.

4. Add “1.1” to the skipped revisions if it has been created by “cvs import”.

5. Add “1.1” to the skipped revisions if it is “dead” (e.g. the file was initially
added on a branch).

Issues for this phase range from missing default branches to inconsistent
branch relationships. Missing default branches are a phenomenon observed in
pkgsrc where files have been created by “cvs import” and have a head revision
of “1.1”, but no default branch. Side effect is that checkouts would extract this
version and not “1.1.1.1”, but this fact gets lost on the next commit. The only
way to detect this problem afterwards is by looking for tags on “1.1”. Since it
is relatively rare and the conditions are not well understood, this isn’t handled
automatically.

Inconsistent branch relationships most often happen with partial branches
(branches that cover only part of the tree). Sometimes additional files are
branched at a later point, ignoring the correct relationship. This is not relevant
for CVS. Since there is no clear way for automatically handling such conditions,
a warning is issued.

4.4 Branch creation times

This phase tries to synthesize the time when the branches were created. It has
three sets of dates to consider for this purpose:

1. The date of the branch point.

2. The date of the next revision on the parent branch.

3. The date of the first revision on the branch itself.

Consistent branching would ensure that no commit happens between the
branch point of a file and the branch creation time. All branch points and the
first revisions on the branch should not be later than the branch creation time.

If all branches are created from consistent tags or it has been ensured that
branch creation isn’t disturbed by commits, all three sets of dates are consistent.
Selection one set matters, if branch creation is not atomic.

Two major approaches exist for dealing with that:

1. Create the branch as early as necessary and replay changes on the branch.
This is the approach taken by cvs2svn.

2. Create the branch at the time of the last branch point and backout all
accidental changes. This is the approach taken here.

The cvs2svn approach has the advantage of preserving small changes and
allows more useful annotations. It is quite a bit more complex though. Avoiding
this complexity can be justified by:

• A complete tagging history from CVSROOT/history can provide precise
time stamps from an external source. This can easily be hooked up into
the conversion process.

• Most branches with inconsistencies are the result of incorrect “cvs add”
operation. This was the case for the analysed NetBSD repositories as well
as the Tk repository.

• Proper handling of such “cvs add” operations require human intervention
if no history is present. The number of affected case tends to be small
and the gain is obvious. One time use can be as simple as executing a
DELETE statement after the first import phase.

• A clean up process can be scripted to insert a “dead” revision using “rcs”
and “ci”. This approach has been used on the NetBSD repository.

• Post-processing after the import can identify the problematic change sets.
One example is the “fossil test-timewarp-list” command.

The simple approach cuts down the number of artificial commits and there-
fore results in a cleaner repository.

4.5 Fossil import

The last phase combines the data of the previous phases to compute the actual
manifests. This phase orders all versions of a given branch by the commit date
and path. Change set aggregation is done based on the following rules:

• All commits to be aggregated have the same author and the same commit
message.

• A file is changed at most once in a change set.

• The creation time of a child branch is not crossed.

• The difference between the oldest and newest commit is no larger than 10
minutes.

Order by path as secondary criterion makes the order stable. This allows
repeating the same process with a newer repository and getting a compatible
result. This is the poor man’s version of incremental conversion.

One special case is a branch that doesn’t contain any changes. This is the
only case where cvs2fossil creates an artifical manifest. If there is a change, the
branch tagging is packed into the first manifest of this branch.

VCS Repository size IO for clone
Fossil 2221MB 59KB out / 1384MB in
Git 717MB 2.1MB out / 651MB in
Mercurial 1848MB 893KB out / 3584MB in

(compressed: 451KB in, 910MB out)
CVS 4286MB n/a

Figure 1: Repository sizes

4.6 Performance

The run time for the conversion process on an Opteron 1389 (Quad-core, 3 GHz)
with a RAID-1 of two 7200rpm SATA disks with 4GB memory is as following:

CVS import 34min
Vendor branches 4min
Branch creation time 24s
Fossil import 3h 56min

This does not include the time for “fossil rebuild” since the continous update
process doesn’t actually run it. The resulting repository is pushed to a local
master copy and synchronised to the public repository from that.

Reports indicate that cvs2svn needs at least twice the time for larger repos-
itories.

5 Fossil performance

The most common operations for developers are creating a new working copy,
looking at the changing in a working copy, committing and updating. Push and
pull operations are not analysed in detail since they tend to be network bound.
The case of network operation is also outside the scope.

All test cases involve the converted CVS repository and the default branch.
For this purpose the Fossil repository has been converted to Git and the Git
repository imported into Mercurial. The numbers are average of six runs with
hot caches.

Creating a new working involves either “fossil open”, which creates a check-
out associated with the local repository file, or cloning the repository from a
local or remote destination. Figure 2 shows that Fossil has somewhere between
Git and Mercurial for this. The majority of the work is writing all the files. Fos-
sil currently spends quite a bit of time before actually writing all files, further
work is needed to investigate exactly what is going on.

Figure 3 shows the necessary time for finding all changes in the working
copy after applying a small patch that changes two files. This operations involves
comparing the modification time of all files in the tree with the recorded version.
After the “status” command, the “diff” command is used to create a unified diff.

Figure 4 shows the time for committing the changes and updating to the
parent of the original head version. At least “fossil update” is doing too much
work. It doesn’t fully use the meta data tables yet and has to fully parse the
manifests of old and new version. There is room for improvements here. The
long time for “fossil commit” also has to be investigated.

Run time for common repository operations

Open/Clone

R
u
n
 t
im

e
 i
n
 s

0

40

80

120

160

200

240

280

320

360

400

Fossil Git Mercurial

Figure 2: Time for creating a working copy

Run time for common repository operations

Diff Status

R
u
n
 t
im

e
 i
n
 s

0

0.2

0.4

0.6

0.8

1

Fossil Git Mercurial

Figure 3: Time for finding changes in a working copy

Run time for common repository operations

Commit Update

R
u
n
 t
im

e
 i
n
 s

0

2

4

6

8

10

Fossil Git Mercurial

Figure 4: Time for committing changes and updating

6 Summary and future work

The new cvs2fossil tool provides a fast conversion tool that can handle large
repositories. The number of artificial commits and conversion glitches could be
minimized by cleaning up various issues. This was made easy by exploiting the
database and writing small Python scripts calling “rcs” and related programs.

Various tests show that the Fossil repository and CVS give exactly the same
output for individual revisions. Differences when comparing working copies of
specific branches are accounted for.

The performance of Fossil is competitive. Some areas like “fossil pull” need
further work, but the majority of the work can shift to improving the user
interface.

