
by Claudio Jeker

Demystifying MPLS
The MPLS framework in OpenBSD
Work on supporting MPLS started in 2008 at the n2k8 mini-hackathon in Ito (Japan). In the last 2
years much work went into this new framework. Apart from the network stack changes ldpd(8) --
the label distribution protocol daemon -- was developed and bgpd(8) was modified to make it pos-
sible to setup and terminate MPLS VPNs on OpenBSD. OpenBSD is probably the first open-source
system able to do MPLS out of the box without additional patches.
Most people have heard about MPLS but how it actually works is often unknown. MPLS changes
the way networking is done. While the label switching part itself is trivial it is just one part of a
much larger puzzle. There are changes in many routing protocols and with over 150 RFC about
MPLS shows that this is more than just simple label switching.
Overview

In the late 1990s the Internet boom started and with
this boom the routing table started to grow exponen-
taly. When router needed to store more then 100’000
routes for the full view problems started to show up.
It was hard to upgrade the memory on many systems
and the lookup times on large routing tables grew so
much that it seemed almost impossible to do line rate
best prefix matches. IP address lookups are more
complex because both the address and the netmask
need to be considered and the best match must be
found. On the other hand perfect matches like the
MAC address lookups done by switches are much
simpler since there is no netmask to consider and
such lookups can be done in hardware with CAM
(content addressable memory) tables or with simple
hash tables or binary trees. So a solution was created
that allows less complex, faster and hopefully cheaper
devices in the core. The IP route lookup was moved to
the systems at the border of the network and inside
simple label switching was performed. Other net-
works like Frame Relay and ATM already used label
switching so the concept was not new. Unlike ATM
the label switching in MPLS is done in a less complex
way plus the network layer was not changed. The

complexity of ATM and the small data cells are prob-
ably the cause that MPLS was created instead of
switching the infrastructure over to ATM in the core.
ATM is just not competitive against Ethernet when
large amount of bulk data has to be transferred.

Label Switching

By default on every hop an IP route lookup has to be
done. So every router along the path to the destination
does his own lookup and decision. Label switching
changes this so that only the edge routers of an MPLS
network are doing a route lookup. The edge systems
(PE router) decide which path a packet needs to take.
So label switching is more like source routing since
the route lookup is done on the source and then no
other IP lookup needs to be done until the end of the
path is reached. In the OSI model MPLS is some-
where between the data link layer (layer 2) and the
network layer (layer 3). It can be viewed as an exten-
sion of the data link layer but this is not entirely cor-
rect so it is common to talk about layer 2.5 for MPLS.
Each Label Switching Path (LSP) has a label
assigned. The labels are not globally defined, they’re
swapped on every hop through the network. So the
Label Switching Routers (LSR) inside the network (P

Demystifying MPLS - The MPLS framework in OpenBSD Claudio Jeker
routers) don’t need to look at the IP header anymore,
they use the MPLS label to lookup the LSP and swap
the label with the new label for the next hop. For
Ethernet it is common to assign the labels per system
so it does not matter on which interface a packet is
received on. In ATM and Frame Relay networks
labels are normally assigned per interface since the
protocol labels itself are used for MPLS. OpenBSD
currently only supports a system wide label space
since neither Frame Relay nor ATM is supported and
so per interface label spaces are not needed.

Figure 1: Overview of an MPLS Network

An LSP is an unidirectional path so it is impossible to
know from where a packet was received. If an LSR
along the path has troubles with forwarding the
packet no error message can be sent back to the
source. This makes debugging issues in label switch-
ing networks a challenge. A path needs to be manu-
ally followed hop by hop until the failure is found.

MPLS

The MPLS header as defined by RFC3032 is a simple
4-byte header consisting of a label value, a traffic
class field formerly known as experimental bits, a
bottom of stack flag, and a TTL.

MPLS header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+ Label
| Label | Exp |S| TTL | Stack
+-+ Entry

 Label: Label Value, 20 bits
 Exp: Experimental Use, 3 bits
 S: Bottom of Stack, 1 bit
 TTL: Time to Live, 8 bits

It is possible to stack MPLS headers and by doing
that it is possible to build virtual circuits between Pro-
vider Edge (PE) routers. The last MPLS label has the
bottom of stack flag set.
The TTL field can be inherited from the IP packet and
on exiting the MPLS network the TTL value can be
copied back to the IP packet. This plus a bit of trick-
ery in the MPLS error handling allows to traceroute
through MPLS networks. If the TTL is not copied
back then the MPLS network will appear as a single
hop in traceroutes.
There is no next protocol identifier so the protocol of
the packet that is MPLS encapsulated needs to be
known by the two ends of the LSP. Intermediate sys-
tems can only guess the next protocol by looking at
the first nibble and decide if it is IPv4, IPv6 or some-
thing else. This guessing is enhanced by the sug-
gested encoding rules in RFC4928.
Every label specifies a specific path. Because of traf-
fic engineering it is possible to have multiple pathes
to the same endpoint. A common term for such an
endpoint is the forwarding equivalence class (FEC).
All packets to the same FEC are treated the same way,
they take the same path and get the same forwarding
treatment.

Label Distribution and Forwarding

While it is theoretically possible to set up the LSPs all
manually it is not feasible on non trivial networks. An
automated way to assign and distribute labels is
needed. For MPLS the label distribution protocol
(LDP) is used for this task. By default LDP reads the
routing table and assigns a label for every prefix in the
table. So by default each prefix is considered an FEC
and gets an own LSP. These labels are then redistrib-
uted by LDP to the other directly connected routers in
the network. So the full LSP is built hop by hop from
the destination to the various sources. Assigning
labels is fairly trivial since they only need to be
unique per system. Every LDP instance along an LSP
chooses its own labels and this can be done even
before the mapping for the LSP nexthop reached the
router. Since LDP only reads the routing table and
assigns labels according to this table it is obvious that
an other routing protocol is needed to build this rout-
ing table in the first place. This is the job of a tradi-
tional IGP (internal gateway protocol) like OSPF or
RIP. So while for example OSPF is used to distribute
all routes through the network and there for making
all routers reachable, LDP is used to distribute the
LSP or label information for these routes (FEC).
MPLS will only be used if both the route and label for
this route are available at a router. The received label
is attached to the nexthop information of the route
and is from now on used for outgoing packets to that
destination. A second table maps the local incoming

P

MPLS Provider

BR1

BR2

PE1

PE2

PE3

Internet

Customer 2

Customer
1

Customer 2

CE

CE

CE

PE: Provider Edge Router
P: Provider Internal Router
BR: Border Router
CE: Customer Edge Router

LSR: Label Switching Router
LSP: Label Switching Path

LSP

P
P

LSR

Demystifying MPLS - The MPLS framework in OpenBSD Claudio Jeker
label for this FEC to the nexthop and outgoing label
of the route. PE routers at the edge use the first table
to figure out the LSP to use to get to the destination
while P routers only look at the second table to switch
the incoming MPLS packets forward. The label of the
incoming MPLS packet is used to lookup the instruc-
tions to forward the packets. By default the lookup
will return a new outgoing label that is swapped with
the incoming one plus a nexthop to where the packet
needs to be sent to. It is also possible that the label
just needs to be popped of the stack or that a label is
pushed onto the label stack. Normally only the first
label on the stack is looked up. In some cases it can be
possible that a pop operation causes a second lookup.
P systems should only swap labels whereas PE sys-
tems initially push one or more labels onto the label
stack and then pop them off at the other end.

MPLS VPN

PE routers build the initial MPLS label stack. By
building a label stack with multiple labels it is possi-
ble to select an endpoint plus an additional label that
the endpoint can use to select the correct customer to
forward the packet to. So while packets use the same
LSP to get from PE-1 to PE-2 they do not interact
with either the underlying network or with other cus-
tomers. So each customer is setup in a virtual routing
instance - the term Virtual Routing & Forwarding
(VRF) is commonly used for such instances. On
OpenBSD this can be achieved with the routing
domains (rdomain) support.
It is obvious that the PE routers need to exchange the
labels used for the MPLS VPNs so that the correct
labels can be selected for each customer. There are
two ways to do this. First of all it is possible to use
LDP to distribute these labels across a targeted ses-
sion between two PEs. Now targeted session need to
be setup manually and on large networks a large mesh
with many sessions is needed and it is hard to do
extensive filtering in LDP. Because of these limita-
tions it became common to use BGP to distribute the
MPLS VPNs. BGP can be easily extended by addi-
tional TLV attributes, has extensive filtering capabili-
ties and thanks to route-reflectors it is possible to
avoid full meshes between all PE routers. BGP MPLS
VPNs use an own address encoding and BGP
extended communities to transport all needed infor-
mations between the various PE routers.

PE - CE Interaction

For simple customer networks the interaction
between the customer and the MPLS provider is fairly
limited. On the customer edge (CE) router a few static
routes are installed and the same is done on the PE
routers. If the number of customer networks grow or

it is necessary to allow dynamic routing between the
sites all becomes a bit more complex. Having a rout-
ing protocol running between the CE and PE systems
would allow changes to the customer network without
needing changes done on the provider systems. At the
same time the provider does not want that the cus-
tomer could cause any problems on the provider
equipment that would influence other customers.
Now since the PE routers have a VRF instance
assigned to each customer it is possible to run a rout-
ing protocol inside these instances. In most cases
OSPF or RIP is used to exchange the routes.
So the CE router redistributes its local networks to the
PE router. The PE router will then import these routes
into BGP MPLS VPN and transport the networks to
the other PEs that have VRFs for the customer config-
ured. On those PEs BGP will import the routes back
into their VRF instance and the local OSPF will redis-
tribute the routes to the local CE systems. This sounds
all nice but has some drawbacks. All IGP specific
routing information like metrics are lost between the
PE routers and it looks like the PE is the source of the
networks announced to the CE routers even though
these networks were announced by another customer
system. This does not matter if the MPLS VPN is the
only connection between the various customer net-
works. If this is not the case ugly things may happen.
Internal routes may no longer be preferred and traffic
may suddenly loop through the MPLS VPN that does
not need to leave the local network. To fix this OSPF
and BGP were extended so that BGP is able to trans-
mit the full link state DB of OSPF to the other sys-
tems without losing information. Additionally OSPF
was extended to flag routes inserted by PE systems to
prevent loops and silly routing issues. These exten-
sions are currently not available in OpenBSD. The
interaction between bgpd and multiple ospfds is a bit
tricky since the information needs to be queried over
the IMSG socket.

VPLS and PWE3

MPLS VPN are used to connect customers at Layer 3
but most often customers would like a Layer 2 serv-
ice. This is where Pseudowire Emulation Edge-to-
Edge (PWE3) comes into play. PWE3 defines the
encoding of Layer 2 packets and streams. Not only
Ethernet frames can be packed into PWE3 packets but
also ATM, Frame Relay, PPP, HDLC and various syn-
chronous data stream protocols like TDM and STM
can be moved over an MPLS backbone. PWE3 is a
point to point protocol - for ethernet this would corre-
spond to a simple transparent bridge. If multiple sites
need to be connected via a single Layer 2 cloud it is
possible to span multiple PWE3 tunnels and connect
the various tunnels to a central switch or use VPLS.
Virtual Private LAN Services (VPLS) use the same

Demystifying MPLS - The MPLS framework in OpenBSD Claudio Jeker

Ethernet encoding as PWE3 but use a virtual switch
to connect all sites together and there for supports
multicast and broadcast to all sites. The setup of the
VPLS and PWE3 FEC is done via LDP or BGP
(PWE3 only supports LDP). Neither VPLS nor PWE3
is currently supported in OpenBSD but will come in
the near future.

MPLS and OpenBSD

The OpenBSD MPLS network stack is based on the
work by the Ayame project[7] but got massively
changed to better fit our idea on how MPLS should be
integrated into the network stack. Unlike Ayame it
was our goal to reduce the impact of the rest of the
network stack to a minimum.Especially no changes to
the INET and INET6 should be needed.

netmpls

The MPLS stack itself is located in /sys/netmpls/:

• mpls.h
Header file defining MPLS structures and values.
Most important the sockaddr_mpls and the SHIM
header are defined here.

• mpls_input.c
MPLS input processing, the netisr for MPLS is
defined here. Additionally functions for TTL
adjustment and error handling reside in this file.

• mpls_output.c
MPLS output processing including forced packet
checksumming and TTL inheritance from the IP
header. Since no network driver supports delayed
checksumming of MPLS packets it is necessary to
update all checksums before sending out an MPLS
packet.

• mpls_proto.c
Definition of the various protocol structures to cor-
rectly hook MPLS into the network stack.

• mpls_raw.c
sysctl and protosw implementation. It would be
possible for userland to use a AF_MPLS, SOCK_RAW
socket to send MPLS packets but this is currently
untested and not used at all.

• mpls_shim.c
Functions implementing the push, pop and swap
operation needed by the input and output process-
ing.

The code in netmpls is small, all in all 1200 lines of
code including comments.

Routing Table

The MPLS stack itself can only be so small because it
is able to use already available APIs to do a lot of
work. For example it was important to use the already
existing routing table and routing socket code for
MPLS. While it is trivial to have an additional address
family dependent routing table for MPLS it was more
tricky to make the rtsock support MPLS. This is
because not only the MPLS specific routing table
needs to be updated with MPLS information but rout-
ing entries of other address families need MPLS
information attached to them. It is possible to do this
in two ways:

1. Do a second MPLS specific lookup on output
processing to obtain the needed label information.

2. Attach the MPLS label information to the route
entry in a similar way that the L2 MAC addresses
are stored in the routing table.

We chose to use the available rt_llinfo entry in the
routing table to store the MPLS label information on
the routes and skipping the second lookup. The only
problem is that now we need to suddenly add, remove
and change MPLS information on already existing
routes without causing havoc. For this a special rtmsg
flag RTF_MPLS was added. Setting this flag on an
rtmsg instructs the kernel to only update the MPLS
information. While messages without this flag will
clear the MPLS information if the nexthop of the
route is changed. Getting these interactions on the
routing socket correct was one of the biggest issues.

Data Link Layer

As mentioned MPLS is somewhere between OSI
layer 3 and layer 2. In OpenBSD MPLS is currently
supported on Ethernet, gre(4), gif(4), and lo(4) inter-
faces. In the case of Ethernet a special Ethernet type
0x8847 was defined for MPLS packets. MPLS input
handling was added to ether_input(). In
ether_input() and on all other input functions
MPLS packets are pushed onto the MPLS netisr input
queue and an MPLS netisr is scheduled. While the
input processing is trivial output processing isn’t. The
MPLS output function needs to be called somewhere
between Layer 3 and Layer 2. In Ayame the MPLS
handling was done at the end of the Layer 3 in
ip_output() more or less right before calling the
interface output function. At the beginning we opted
for doing it at Layer 2 since at least some changes
were needed to support MPLS in the output functions
whereas non were needed in ip_output() but this
caused troubles because the output functions were
suddenly called recursively. So realizing that neither
Layer 3 nor Layer 2 are the right location we came up
with a 3rd solution. ifp->if_output() is the link

Demystifying MPLS - The MPLS framework in OpenBSD Claudio Jeker
layer specific output function. Now if this function
pointer would be replaced with an MPLS specific
output function then mpls_output() would be called
right between Layer 3 and Layer 2 as it has to be.
Another benefit from this is that MPLS can now be
enabled on a per interface base. The output routine is
swapped when the IFXF_MPLS flag is set on an inter-
face.

mpe(4)

The mpe(4) interface is an MPLS Provider Edge
pseudo-device used to connect a rdomain to an MPLS
cloud. On most systems packets entering a VRF just
appear which makes it fairly hard to filter or traffic
shape such traffic. Because of this mpe(4) was devel-
opped. mpe(4) is a pseudo interface from where all
traffic for a certain FEC will go over when entering or
exiting the MPLS network. Since this is a real inter-
face both pf(4) and altq(4) can operate on it. It is even
possible to use bpf(4) on the mpe(4) interface to see
the traffic in tcpdump. For BGP MPLS VPNs bgpd(8)
will query the mpe(4) interface to get the label identi-
fying this endpoint. Traffic routed to the mpe(4) inter-
face will be added by bgpd with the necessary label
information attached to the route. So that the gener-
ated outgoing packet is sent out with the correct
MPLS label stack.

ldpd(8)

ldpd(8) is based on the same 3 process design as all
other routing daemons in OpenBSD. It is actually
based on ospfd(8). The privileged parent process is
responsible to talk to the kernel and update the rout-
ing table. The two unprivileged children -- the ldpe
and lde -- run chrooted. All processes use the IMSG
framework to communicate with each other and the
ldpe also has a UNIX domain socket as an interface
for ldpctl(8). Some of the ospfd(8) inheritance is still
obvious but LDP is very different from the OSPF pro-
tocol. LDP messages are mostly TLV encoded and
there is no distributed DB to sync or DR and BDR to
elect on a network. Instead LDP opens a session with
each neighboring LDP router. In this regard LDP is a
bit like BGP.

ldpe

The ldp engine (ldpe) is the process that talks to the
network. Its purpose is to send out periodic hello
packets and to establish sessions to other LDP neigh-
bors. LDP is a a bit strange since it uses multicast
hello packets like ospfd to find other LDP routers but
it initiates TCP sessions like bgpd to each neighbor
found. Once a session is opened a parameter
exchange happens and if everything succeeds the ses-
sion is established and it is now possible to distribute

labels between the systems. The ldpe will parse the
various TLV messages and send the extracted infor-
mation to the lde. Like the bgpd(8) session engine it is
the ldpe that sends out the periodic keep-alive mes-
sages.

lde

The label distribution engine (lde) is the process
responsible to build the label information base. It gets
various messages from the ldpe with the label map-
pings and address information of the neighbor sys-
tems. It also receives routing informations from the
parent process and with these informations the label
information base is constructed. Local incoming
labels are assigned to FEC and the outgoing labels of
the neighbors are attached to the FEC together with
their nexthop information. All in all the protocol
would not be very complex if the IETF did not add
multiple buttons to the distribution process to make it
more flexible and much more complex. The behav-
iour of the lde depends on three buttons. First of all
the distribution behaviour. This can be either ordered
or independent. When using ordered distribution of
labels ldpd must wait until it has a valid outgoing
mapping for the FEC before distributing the incoming
label to other neighbors. The second button changes
the way advertisements are made. In unsolicited
mode labels are flooded to all peers but in ondemand
mode every neighbor needs to request labels explic-
itly per FEC. Finally the retention of labels can be
changed as well. In liberal retention all labels to all
FEC are stored even if they are currently invalid or
unused. In conservative retention mode all labels that
are currently unused are freed and need to be
requested when needed. In most cases liberal reten-
tion with independent distribution and unsolicited
advertisements is used and this is the mainly tested
mode of ldpd(8).

parent

As in ospfd and bgpd the parent process main work is
to keep the kernel routing table in sync with the label
information base of the lde. It also tracks the link
states and interface address changes that are used by
the ldpe. Unlike routing protocols LDP does not track
the reachability of routes. It just assigns labels to each
route or FEC and tries to build LSPs to these destina-
tions.

bgpd(8)

Configuring MPLS VPNs requires multiple steps.
First of all a routing domain for a customer needs to
be setup. Then a mpe(4) interface needs to be created
in this rdomain and configured. Everything else can
be configured or figured out by bgpd(8). To make

Demystifying MPLS - The MPLS framework in OpenBSD Claudio Jeker
bgpd(8) support BGP MPLS VPNs a few things had
to be implemented first. First of all extended commu-
nity attributes had to be supported. The extended
community attributes are used to tag and identify
routes that need to be imported into a particular rdo-
main. These are the so called import and export tar-
gets. Additionally a major redesign of the kroute code
was needed so that it is possible to handle multiple
routing tables at the same time in bgpd. Finally sup-
porting the new SAFI (subsequent address family)
was fairly simple since bgpd was already mostly
address independent.

Example

The following example shows a simple MPLS ena-
bled network with two PE routers and four P routers.

Figure 2: Example MPLS network

Here the interface configuration of the P routers.

Interface config P1

hostname P1
ifconfig lo1 10.42.21.1/32
ifconfig re1 10.42.0.2/24 mpls
ifconfig re2 10.42.2.1/24 mpls
ifconfig re3 10.42.4.1/24 mpls

Interface config P2

hostname P2
ifconfig lo1 10.42.21.2/32
ifconfig re1 10.42.1.2/24 mpls

ifconfig re2 10.42.3.1/24 mpls
ifconfig re3 10.42.5.1/24 mpls

Interface config P3

hostname P3
ifconfig lo1 10.42.21.3/32
ifconfig re1 10.42.6.1/24 mpls
ifconfig re2 10.42.2.2/24 mpls
ifconfig re3 10.42.5.2/24 mpls

Interface config P4

hostname P4
ifconfig lo1 10.42.21.4/32
ifconfig re1 10.42.7.1/24 mpls
ifconfig re2 10.42.3.2/24 mpls
ifconfig re3 10.42.4.2/24 mpls

All Ethernet interfaces are MPLS enabled and each P
router has a loopback address assigned which will be
used in the ldpd and ospfd config. Both the ldpd.conf
and ospfd.conf files are the same on all P routers with
the exception of the router-id which is set to the loop-
back interface address of lo1.

ospfd.conf of router P1

router-id 10.42.21.1

area 0.0.0.0 {
 interface re1
 interface re2
 interface re3
 interface lo1
}

The ospfd.conf just enables OSPF on all interfaces,
nothing more is needed for this basic setup.

ldpd.conf of router P1

router-id 10.42.21.1

interface re1
interface re2
interface re3

The ldpd.conf enables LDP on all the MPLS enabled
interfaces. Apart from enabling IP forwarding and
starting ospfd and ldpd nothing more needs to be
done on the P routers.

The configuration on the PE routers is a bit more
complex.

Interface config PE1

hostname PE1
ifconfig re0 rdomain 1
ifconfig re0 192.168.237.2/28
route -T1 add default 192.168.237.1
ifconfig lo1 10.42.42.1/32
ifconfig re1 10.42.0.1/24 mpls
ifconfig re2 10.42.1.1/24 mpls
ifconfig mpe0 rdomain 1
ifconfig mpe0 mplslabel 666
ifconfig mpe0 192.168.237.2/32

10.42.4.0/24

10.42.0.0/24 10.42.1.0/24

10
.4

2.
3.

0/
24

10
.4

2.
2.

0/
24

10.42.6.0/24 10.42.7.0/24

10.42.5.0/24

PE1

PE2

P3

P1 P2

P4

re2re1

re1

re3

re2

re2

re3
re1

re1 re2

re1

re2

re3

re2

re1
re3

CUSTOMER

CUSTOMER

re0

re0

Demystifying MPLS - The MPLS framework in OpenBSD Claudio Jeker
re1 and re2 are MPLS enabled and re0 is moved into
rdomain 1 to connect to the customer network. Addi-
tionally there is a mpe0 in the same rdomain 1 and
will act as the edge device for this customer. The
config on PE2 is more or less equal.

Interface config PE2

hostname PE2
ifconfig re0 rdomain 1
ifconfig re0 192.168.237.242/28
ifconfig lo1 10.42.42.2/32
ifconfig re1 10.42.6.2/24 mpls
ifconfig re2 10.42.7.2/24 mpls
ifconfig mpe0 rdomain 1
ifconfig mpe0 mplslabel 666
ifconfig mpe0 192.168.237.242/32

The ospfd and ldpd configuration on the PE routers
are very similar to the ones on the P routers. Only the
list of interfaces is a bit different.

ospfd.conf of router PE1

router-id 10.42.42.1

area 0.0.0.0 {
 interface re1
 interface re2
 interface lo1
}

ldpd.conf of router PE1

router-id 10.42.42.1

interface re1
interface re2

The last bit missing is the configuration of bgpd. First
the settings for rdomain 1 are defined. The values of
the rd, import-target and export-target are the same in
this example but they don’t need to be the same. The
rd needs to be a unique value accross all configured
VPNs in case two customers have the same addresses
configured. The import-target communities need to
match the export-target communities on the other PE
routers. It is possible to set multiple import-targets
and export-targets per rdomain.

bgpd.conf of router PE1

router-id 10.42.42.1
AS 3.10

rdomain 1 {
 descr "CUSTOMER1"
 rd 3.10:1
 import-target rt 3.10:1
 export-target rt 3.10:1
 depend on mpe0
 network inet connected
 network 0.0.0.0/0
}

group ibgp {
 announce IPv4 unicast
 announce IPv4 vpn
 remote-as 3.10
 local-address 10.42.42.1
 neighbor 10.42.42.2 {
 descr PE2
 }
}

The second part of the config creates the session
between PE1 and PE2. Both IPv4 unicast - the default
table - and the IPv4 VPN subsequent address family
are enabled on the session to PE2. The session are
setup on the loopback IPs of both PE routers. Here the
PE2 bgpd.conf to complete the configuration.

bgpd.conf of router PE2

router-id 10.42.42.2
AS 3.10

rdomain 1 {
 descr "CUSTOMER1"
 rd 3.10:1
 import-target rt 3.10:1
 export-target rt 3.10:1
 depend on mpe0
 network inet connected
}

group ibgp {
 announce IPv4 unicast
 announce IPv4 vpn
 remote-as 3.10
 route-reflector
 local-address 10.42.42.2
 neighbor 10.42.42.1 {
 descr PE1
 }
}

Future work

The OpenBSD MPLS support seems to be enough
stable and compliant to setup BGP MPLS VPN tun-
nels with other systems. Quite a bit of testing was
done against systems from Cisco and other OpenBSD
users were able to run LDP sessions to Juniper boxes.
The kernel infrastructure seems to have stabilized and
so the current focus on the development are missing
features - for example PWE3 and VPLS support.
Additionally a lot of work is still needed on ldpd(8)
certain features and operation modes are not fully
implemented yet. The third big area that needs some
work is the PE - CE interaction. Making it possible to
import and export OSPF LSDB entries through BGP
is probably the biggest challenge in this area.

References
[1] Multiprotocol Label Switching Architecture, RFC

3031, January 2001.

[2] MPLS Label Stack Encoding, RFC 3032, January
2001.

[3] LDP Specification, RFC 3036, January 2001.

[4] BGP Extended Communities Attribute, RFC 4360,
February 2006.

[5] BGP/MPLS IP Virtual Private Networks (VPNs), RFC
4364, February 2006.

[6] Avoiding Equal Cost Multipath Treatment in MPLS
Networks, RFC 4928, June 2007.

[7] AYAME project, http://www.ayame.org/

	Overview
	Label Switching
	MPLS
	Label Distribution and Forwarding
	MPLS VPN
	PE - CE Interaction
	VPLS and PWE3
	MPLS and OpenBSD
	netmpls
	Routing Table
	Data Link Layer
	mpe(4)
	ldpd(8)
	ldpe
	lde
	parent

	bgpd(8)
	Example
	Future work
	References

