
Improving the performance of Open vSwitch

Marta Carbone, Gaetano Catalli, Luigi Rizzo

Dipartimento di Ingegneria dell’Informazione

Università di Pisa, Italy

May 30, 2011

Abstract

Open vSwitch is a software implementation of a vir-
tual switch, designed to be fully configurable and
compatible with the most used protocols. Among
other features, the program includes a user space for-
warding engine, which can be used to build flexible
packet processing systems.

In the process of porting Open vSwitch to
FreeBSD, we measured its forwarding performance
and found disappointingly low figures, which existed
also in the original Linux implementation. As a con-
sequence, we analysed and revised the architecture of
some key parts of the code obtaining a speedup of a
factor of 10, up to 690 Kpps.

The main contribution of this paper is to illustrate
the architecture of the system, its performance bot-
tlenecks, and present how we revised it to achieve
huge performance improvements. As a second con-
tribution, we extend the program adding a BPF-
compatible driver, enabling operation on BSD sys-
tems. This driver is of particular importance because
it opens the way to a recently developed network API
called netmap, which promises further huge perfor-
mance improvement.

1 Introduction

Open vSwitch [2] is a software implementation of a
modular packet switch, which can be used both as
a software switch and as a controller for dedicated
switching hardware. Among other features, Open
vSwitch contains two implementation of forwarding

engines – one running in user space, and one talking
to a kernel space forwarding engine. While the origi-
nal Open vSwitch code runs on Linux, it is designed
to be portable to other architectures.

As part of another project related to fast packet
processing, we decided to port the code to FreeBSD.
This mostly required to write a BPF-compatible
driver to send and receive traffic, and this was a
first step to adapt the code to our high performance
drivers. In the process, we measured the forwarding
performance of the system and found surprisingly low
values. This motivated an in-depth analysis of the
code to find the reasons of such behaviour.

Our search quickly identified a poor design of the
main eventloop of the system, and brought us to re-
structure the code in a way that is minimally intru-
sive yet provided a ten-fold improvement in the for-
warding performance.

In the rest of the paper we will present the archi-
tecture of the Open vSwitch code, discuss in detail
its performance issues, and present the solution that
let us improve its performance.

2 Architecture

In Open vSwitch, a virtual switch moves layer-2 pack-
ets between two or more network ports. In the soft-
ware, it is represented by an object called datapath,
which contains a list of ports used by the virtual
switch, and a flow table that associates a specific ac-
tion to each flow. Each packet flowing through the
switch is compared against the entries in the flow ta-
ble, and in case of a match the corresponding action

1

is executed.

The software architecture of Open vSwitch puts
a clear separation between the controller, in charge
of managing ports and computing the content of the
flow tables, and the datapath, which does the actual
packet switching. The two components can run on
different systems, and, as a consequence, the data-
path can be implemented with various technology,
from software to hardware.

commands/
events

datadatapath

FLOW TABLE
tuple action
... ...
... ...

Controller

Figure 1: A virtual switch architecture.

The software architecture of OpenvSwitch is repre-
sented in Figure 2, which includes two options for the
datapath. One, on the left side, indicates a pure user
space implementation. On the right side, a kernel
implementation.

The original Open vSwitch code is written for
Linux in portable C code, though there are obvious
system dependencies when it comes to access spe-
cific kernel modules, or even APIs to send and receive
packets.

The upper layers of the user space code compile
clearly on FreeBSD and are:

• the ofproto library, implementing the core of the
openflow protocol [3];

DPIF/WDPnetdev

DATAPATH

ofproto

openflow cl ients
U
S
E
R

S
P
A
C
E

S
P
A
C
E

K
E
R
N
E
L

Code that
may need
port ing

Figure 2: A virtual switch architecture.

• clients using the ofproto library (ovs-vswitchd,
ovs-openflowd).

The lower layers handle the communication with
the network devices provided by the kernel, so they
are more platform dependent.

The user space implementation is based on a device
abstraction, called netdev, that implements the API
functions to communicates with the network devices
provided by the kernel. The kernel space implemen-
tation implements the flow table directly into the ker-
nel, allowing a faster processing of traffic compared
to the userspace version.

3 Porting Open vSwitch to

FreeBSD

The porting work requires the implementation of a
suitable software layer that talks to native FreeBSD
APIs (in our case libpcap and the routing sockets).

In this work we ignored the kernel module, because
of its tight integration with the Linux kernel, and
because we have plans for better options [1]. As a
consequence, we focused our attention on porting the
ovs-openflowd client, and on the creation of a new
netdev object, netdev-bsd, that uses the FreeBSD
network APIs.

2

Configured ports

Configuration 2 4 6 8

FreeBSD usersp.+ BPF 65 56 51 47

Linux userspace 50 - - -

Linux Kernel 300* - - -

FreeBSD static waiters 74 73 68 67

FreeBSD 2 threads +

1pkt per poll() 380 330 300 270

FreeBSD 2 threads +

50pkt per poll() 690* 690 684 680

Figure 3: ovs-openflowd throughput in Kpps with
different configurations.

A detailed description of this port will be given in
the full version of the paper.

4 Performance

Once the port has been completed, we measured its
forwarding performance to figure out the operating
limits of the system.

To test the OpenvSwitch performance we run a set
of tests using different software configurations. Test-
ing sessions involve real PCs used as sender/receiver,
and packets generators (netsend and pg) to send
minimum-sized packets at different rates. The re-
sults are in the first row of Figure 3, and are defi-
nitely disappointing, peaking at 65 Kpps and rapidly
decreasing as the number of ports grows.

Thinking of bugs in our implementation of the
network module, we then compared the values with
those on Linux, and we found equally poor perfor-
mance – only 50 Kpps with userspace forwarding,
about 300 Kpps with the kernel forwarding module.
As a reference, native FreeBSD bridging on the same
hardware runs above 700 Kpps.

The difference between the Linux and the FreeBSD
performace was unexpected. Since the FreeBSD port
uses the pcap library, which involves an additional
copy of the packet, we expect this value to be slower
if compared with the corresponding Linux result. The
explanation of this depends on the interface used to
grab packets from the kernel. The Linux implemen-

tation gets the packets from the kernel one by one,
while in FreeBSD the libpcap buffer gets more that
one packet for each syscall. Note that in this pre-
liminary version, the ovs-openflowd program still
process one packet at time.

4.1 Code scrutiny

To explain and correct the poor performance, we
started to investigate the Open vSwitch architecture.

The ovs-openflowd main loop executes the follow-
ing steps:

• create a list of objects waiting for packets (wait-

ers list);

• call the poll() function on the file descriptors
associated to the entries in the waiters list;

• surprisingly, destroy the waiters list;

• invoke all the callbacks associated to all objects
in the system, irrespective of whether or not the
corresponding file descriptor reported as ready.

The inefficiency of this process is obvious – a lot of
useful information is thrown away and rebuilt at ev-
ery iteration. This is especially undesirable as the
poll() wakes up at every packet to forward.

Another source of inefficiency is the fact that the
waiters list contains at least one element for each con-
figured port in the (software) switch, meaning that
performance degrades rapidly with the number of
ports.

An initial, simple performance improvement con-
sists in preserving the list of waiters across iterations.
This change alone (see the line “static waiters” in the
Figure) brings the 2-port performance to 74 Kpps,
and degradation with the number of ports is much
slower. Still, this is far from being satisfactory.

Short of a major restructuring of the program, our
solution to achieved decent throughput is to remove
the handling of high-traffic file descriptor from the
main loop. In detail, we created a separate thread
and event loop which only deals with BPF file de-
scriptors, and invoke only the callbacks for which de-
scriptors are ready. In this system, some packets need
to be processed by the main event loop (they are the

3

initial packets of a flow, which cause flowtable entries
to be created). We address this problem using a pipe
that connects the two event loops: when one of these
packets is received, it is stored into a queue shared
by the two threads, and the event is signaled to the
pipe so that the main event loop is woken up and can
process queued packets (a small subset of the overall
traffic).

Despite the extra signalling and locking costs
involved, we managed to reach a throughput of
∼690Kpps, which is close to the limit of our traffic
generator.

References

[1] NetMapOpen: memory mapping of network de-
vices. http://info.iet.unipi.it/∼luigi/netmap.

[2] Open vSwitch: an Open Virtual Switch.
http://openvswitch.org.

[3] OpenFlow. http://www.openflow.org.

4

