
© The Aerospace Corporation 2011

Improving System Management With ZFS

Brooks Davis
brooks@aero.org

Enterprise Information Services
Technical Computing Services
19 March 2011

Monday, September 26, 2011

mailto:brooks@aero.org
mailto:brooks@aero.org

What is ZFS?

Monday, September 26, 2011

...
Most of you already have some idea.
But a quick overview is in order.

Zetabyte File System

Monday, September 26, 2011

expanding the acronym we get the Zetabyte File System.
which doesn’t tell us much except that it’s big!

More than a filesystem

Monday, September 26, 2011

In fact it is more than a file system

Data Protection and
Integrity

Monday, September 26, 2011

combines RAID like data protection and check sum based integrity verification

Volume Management

Monday, September 26, 2011

with volume management

File Systems

Monday, September 26, 2011

supporting the creation of file systems

Block Devices

Monday, September 26, 2011

and block devices aka volumes.

Snapshots

Monday, September 26, 2011

Modern filesystem features like snapshots.

Single interface for
storage management

Monday, September 26, 2011

...

ZFS History

• September 2004: Announced

• November 2005: Released in OpenSolaris

• June 2006: Released in Solaris

• April 2007: Committed to FreeBSD

Monday, September 26, 2011

How Does ZFS Work?

Monday, September 26, 2011

Quick tutorial on general ZFS functionality

zpool(1)

Monday, September 26, 2011

We’ll start at the bottom with storage pools.
Storage pools are created and managed by the zpool(1) command

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

pools are collections of
vdevs

Monday, September 26, 2011

In the previous example ad6 is a real and virtual device

vdev types

• device: disk in Solaris, GEOM in FreeBSD

• mirror: RAID1-like group of devices

• raidz1: single parity protection

• raidz2: double parity protection

• raidz3: triple parity protection

Monday, September 26, 2011

raidz1 -> RAID5
raidz2 -> RAID6
Allowing 1 and 2 drive failures to be recovered
ZFS is good at recovering data from partially damaged disks due to it’s use of check summing

special vdev types

• spare: device waiting to replace a failing
device

• log: intent log device

• cache: read cache

Monday, September 26, 2011

Spares are used by management infrastructure to replace disks when they fail.
log devices speed up writes and can (should!) be mirrored
cache devices speed up reads and can only be normal devices

What if we need more
storage?

Monday, September 26, 2011

back to the examples

Monday, September 26, 2011

picking up where we left off
adding space is trivial, we just add a vdev

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

That’s really all there is do it. Of course, we’ve just create a RAID0-like system which
probably isn’t what we want.

What if you actually like
your data?

Monday, September 26, 2011

So ...
and want to keep it around?
I won’t go in to much more detail
here’s a quick example of mirroring for more realism

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

I always find this a little unnerving.
You can wipe our terabytes of data as easily as this empty test volume.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Verifying data integrity

Monday, September 26, 2011

One of the more useful features of ZFS is that all data is protected by checksums. Those are
verified as data is read but can also be verified using the “zpool scrub” command.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

We’ve got out storage pool

Monday, September 26, 2011

Now let’s put some data on it.

Monday, September 26, 2011

Monday, September 26, 2011

I picked 10GB arbitrarily here because it took a reasonable amount of time to write and verify.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Now we kick off a scrub.

Monday, September 26, 2011

We can watch the status of the scrub with the zpool status command

Monday, September 26, 2011

I highly recommend this process for any storage system even one you don’t plan to use ZFS
on.

Monday, September 26, 2011

With a test similar to this we could reliably trigger data corruption on a Sun branded Adaptec
RAID controller.

Monday, September 26, 2011

Once we’d spotted the issue with ZFS we found that we could replicate it with UFS or even
with no file system.

Monday, September 26, 2011

All we had to do was write to two disks at the same time and eventually we’d get data
corruption.

Monday, September 26, 2011

I wasn’t able to install that card in this test box so the test completed without errors.
I’ve found errors that would otherwise have been hard to spot in multiple cases in the past so
I can’t recommend blasting some data onto a ZFS file system and then scrubbing the pool too
much as a burn in test.

zfs(1)

Monday, September 26, 2011

Now that I’ve established some basics of pools, we can move on to the meat of the talk which
is file system management. The zfs command manages file systems and volumes.

Monday, September 26, 2011

Monday, September 26, 2011

I’ve already shown you the zfs list command in passing. Now for some more interesting
features.

Monday, September 26, 2011

Monday, September 26, 2011

Let’s create some file systems

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

By default a pool is mounted at /<poolname> and file systems are mounted relative to their
parent.

Monday, September 26, 2011

Individual mount points are controlled by the mountpoint property.

Monday, September 26, 2011

Here we see that all mounts have the default value.

Monday, September 26, 2011

We can change the mount point by setting the property.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Now all of the file systems are mounted under /data and you can see how the property on
test has flowed down to it’s children.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Now, if we change our mind and want to revert those changes.

Monday, September 26, 2011

We use the inherit command. I find it a bit unintuitive that the opposite of “set” in “inherit”
and not “unset”, but to makes some sense.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

This shows the action of the first inherit command. Note that test/a is still mounted at /a.

Monday, September 26, 2011

One more inherit...

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

And we’re back where we were.

Volumes

Monday, September 26, 2011

In addition to file systems, zfs allows the creation of volumes which are simply block devices.
On FreeBSD they are just GEOMs.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

The name used there comes from our ZFS only systems. The Netbackup client crashes if
there aren’t any file systems it recognizes as local. Since it’s a 5.x binary they didn’t know
about ZFS then so we need a local UFS file system. One note about this hack, we mount the
file system late with the late option in /etc/fstab.

Snapshots

Monday, September 26, 2011

One of the more useful administrative features of ZFS is the ability to take snapshots. A
number of features are built around them and many of the examples we will show later use
them. Before we get to those, some simple snapshot basics.

Monday, September 26, 2011

Monday, September 26, 2011

Before we start messing with snapshots, let’s put some trivial contents in the test tree.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

By default snapshots are on a single filesystem or volume

Monday, September 26, 2011

You can also make recursive snapshots to cover a whole hierarchy.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

We won’t use the non-recursive snapshot so I’ll get it out of the way. You remove snapshots
with the destroy command.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

OOPS!

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

For a simple change like this, we might just copy the files out of the snapshot to recover
them. However, ZFS gives us other options that might be more appropriate in more
complicated cases.

Clones

Monday, September 26, 2011

While piecemeal restoration of files is useful and can be a great self service mechanism for
users it’s not ideal for complex problems. Snapshot clones provide a more full features
mechanism for access to snapshots.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

A clone is a writable copy of the snapshot. In effect a fork of it.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Solving problems with
ZFS

Monday, September 26, 2011

Now that I have introduced some ZFS basics, it’s time to move on to some of the problems we
have addressed with ZFS.

History of Aerospace
Adoption of ZFS

• NAS filers (Solaris)

• Mirror server

• Aerosource

• General servers, root FS

Monday, September 26, 2011

First a brief history of our adoption of ZFS.
...
I will talk about the middle two

Mirroring with ZFS

Monday, September 26, 2011

ZFS management
model and cost:

excellent fit for mirrors

Monday, September 26, 2011

One big pool of storage
No need to buy raid controllers
Fast reboots

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

You could do a simple mirror layout like this.
It would give you some basic ZFS benefits including easy addition of storage.

Addressing mirror
consistency with ZFS

Monday, September 26, 2011

Catalog and data files
out of sync

• When you rsync a mirror you may get
catalogs before the files they reference

• Arguably the problem is naive mirror
software like rsync

• Workarounds

• Rsync --delete-after and --delay-updates

• Use an rsync, test, repeat if needed loop

Monday, September 26, 2011

Some times you can get the catalogs days early when doing a large mirror update.
Workarounds shrink, but do not eliminate the window

ZFS cloned snapshots

Monday, September 26, 2011

An alternative solution is ... and updating the snapshot

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Update the
FreeBSD-2011-02-27

filesystem until consistent

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

This destroy may fail if the file system is busy.

Monday, September 26, 2011

This will also fail in that case so a script needs to handle this.

Monday, September 26, 2011

Not currently
mirroring to ZFS due
to unstable hardware

Monday, September 26, 2011

Aerosource and ZFS

Monday, September 26, 2011

Intro to Aerosource
and ARANDA

Monday, September 26, 2011

What is Aerosouce?

Monday, September 26, 2011

Monday, September 26, 2011

Our internal SourceForge.
Collaboration platform.
Open to all employees.
Based on Trac and Subversion.
Lots of custom management infrastructure.

ARANDA:
Aerosource Restricted

And NDA

Monday, September 26, 2011

Projects where pieces are subject to legal or security restrictions.
Not supported at all for many years, added recently to support continuity of operations and
provide uniform access to tools.

About 300 Projects

Monday, September 26, 2011

90GB of Project Data

Monday, September 26, 2011

More on ZFS
Properties

• Properties are attached to filesystems and
volumes

• Property names containing ‘:’ are reserved
for user defined properties

• No other structure exists for property
names

Monday, September 26, 2011

Problem:
Avoiding conflicting meanings
for ZFS properties between

scripts

Monday, September 26, 2011

Solution:
Prepend domain name

to property names

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

ZFS Properties for
project meta-data

Monday, September 26, 2011

What to store?

• Project user and group

• Only store the group (same as user)

• Project access control (Apache
configuration)

• Public, Auth Required, Private Group

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Properties drive scripts
that create Apache

config files

Monday, September 26, 2011

previously we had files containing lists of projects for each type of project.

Project Storage
Replication

Monday, September 26, 2011

Differing Replication
Needs

• Off-site warm spare

• Alternate datacenter
on East coast

• Full replication

• Efficient on slow
WAN links

• Development server

• Smaller system

• Developers not
authorized to see all
project contents

• Avoid using excessive
disk space

Monday, September 26, 2011

Long term goal:
multiple source hosts

Monday, September 26, 2011

Additionally, we’d eventually like to support having projects have a home server so both
servers are active and serving the projects that are at home on them.

Want only one
replication script

Monday, September 26, 2011

Aerosource storage
layout

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Properties supporting
replication

• aerosource.aero.org:sourcehost =>
aerosource-west.aero.org

• aerosource.aero.org:targethost =>
aerosource-vm-dev.aero.org:data

• aerosource.aero.org:lastsnap:targethost =>
rep_1298838010

Monday, September 26, 2011

sourcehost: home system, always aerosource-west today
targethost: list of hosts and zfs datasets to send data to
lastsnap:targethost name of the last snapshot sent to a given host

Replication Cases

• Bootstrap: Project not transferred before

• Incremental: Transfer changes since last
transferred snapshot

Monday, September 26, 2011

Case: Bootstrap

Monday, September 26, 2011

Bootstrap is the easiest case
Just make a snapshot and send it.
We have an option to destroy the file system on the other end if one exists.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

that is that

Case: Incremental

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

And that’s it for the update.
You might have noticed that we didn’t remove the snapshot on the remote system. The
reason for this is that we don’t need to due to our use of the -F option to zfs receive. It
removes filesystems and snapshots that were removed on the source side as well as any
changes made on the target side since the snapshot specified by -I

Monday, September 26, 2011

This can be seen in a quick example.

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Scripting with ZFS

Monday, September 26, 2011

That’s it for my concrete examples. For the replication I suggest looking over the script in
the paper. I hope to release an updated version of the script soon with our latest
improvements.
Now for some tidbits on ZFS and scripting.

Default output is
human friendly, not
machine friendly

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

-H and -o options to “zfs list” work similarly

Restricting zfs list
output

Monday, September 26, 2011

One other thing that is useful to do is to restrict the output of “zfs list”

Monday, September 26, 2011

Monday, September 26, 2011

Monday, September 26, 2011

For example you might have a file system hierarchy like this.

Monday, September 26, 2011

You can of course show only a single file system

Monday, September 26, 2011

Monday, September 26, 2011

or you might want to only show a limited depth

Monday, September 26, 2011

You would often do these things in combination with -H and -o

ZFS Scripting
Deficiencies

• Need to get all props if you use variable
prop names like
aerosource.aero.org:lastsnap:host

• Need to scan “zfs list” output to get lists of
snapshots, filesystems, etc

• Adding fnmatch() support to the get and
list commands would help

Monday, September 26, 2011

Scripting support is not quite as good as it could be.
More control over listed values would be helpful -D# for specific depth?

Conclusions

Monday, September 26, 2011

We’re using ZFS in a number of interesting ways and I think it’s making our lives easier.
I hope this talk inspires you to think about more interesting things you can do with ZFS.
There are a lot of basic scripts out there, but there’s room for more interesting frameworks.

Questions?

Monday, September 26, 2011

Disclaimer

• All trademarks, service marks, and trade
names are the property of their respective
owners.

Monday, September 26, 2011

